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Abstract: Non-conjugated dienes were dihydroxylated using the commercially available osmium tetroxide 
AD-mix-a reagent resulting in highly regioselective dihydroxylation of the terminal olefin rather than the 
internal, more substituted olefin. These findings now allow for the use of allylmetal reagents on substrates 
where preexisting internal olefins are present. The resultant dial can be cleaved to the aldehyde allowing for 
subsequent transformations. This selectivity is controled by a steric effect imposed by the allylic silyl ether 
adjacent to the internal olefin. 0 1997 Elsevier Science Ltd. 

Recently we reported the synthesis of stipiamide, a new multi-drug resistance reversal agent, together 

with 6,7-dehydro-stipiamide, a non-natural and more potent variant.’ The anti- 1,2-hydroxymethyl functionality 

was made using Brown’s crotyl boration procedure.* It was found to be superior in yield and selectivity to 

analoguos asymmetric aldol methods’ (sch. 1). Selective cleavage of the primary olefin in the presence of the 

tri-substituted oletin then became a necessity. Previous osmium tetroxide dihydroxylation studies of simple 

non-conjugated dienes by Sharpless Corey’ and others6 have shown conclusively that the more substituted, 

internal olefin is selectively oxidized. Selective diene oxidation in favor of the least substituted olefin has been 

reported by Danishefsky using stoichiometric osmium tetroxide.’ More recently, a catalytic version with NM0 

(N-methylmorpholine N-oxide) has been used with moderate selectivity. ’ When this procedure resulted in poor 

yield and selectivity with our substrate, we reasoned that use of a larger ligand on osmium might favor oxidation 
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of the terminal olefin. The Sharpless AD-mix reagent’ was found to selectively dihydroxylate the terminal olefin 

allowing for treatment with periodate to give the needed aldehyde. This paper will explore some of the factors 

contributing to this selectivity and extend the generality of this useful transformation. 

The stipiamide substrate (Table 1, entry 1) cleanly underwent terminal olefin oxidation using the commercially 

available AD-mix-a in 1: 1 H,O/t-BuOH at room temperature using the conditions of Sharpless.” This reaction was 

Table 1. Dihydroxylation of non-conjugated dienes using AD-mix-a.” 

entry Substrate Product(s) yield (de) 

1 

2 w 
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3 & 

OTBDPS 

OH 
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86% (1:l)C 

63% (l:i)d 

70% (1:l)” 

2, 
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*Unless otherwise indicated, all reactions were run at rt for 24 h according to the pro&we of Sharpless. This reaction was run 
using AD-mix-P. ‘12 h, the yield is based on recovered starting material. dYield based on recovered starting material. 
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performed on 10 g scale numerous times during the course of our synthesis giving consistent yields of 85-87% 

(1: 1 de) with no internal dihydroxylation or tetrahydroxylation products (>2@ l).’ ’ 

It appears that steric hinderence incurred by the large silyl ether adjacent to the internal olefin prevents 

dihydroxylation of the internal olefin due to an unfavorable interaction with the bis-cinchona complexed osmium 

tetroxide.” Use of osmium tetroxide with added quinuclidine or triethylamine gave mixtures of internal, terminal 

diol, and tetraol in low yield. Entry 2, lacking the ally1 methyl group, reacted with high selectivity with AD-mix- 

p giving product in higher yield compared to AD-mix-a. The origin of the enhanced yield is unknown at this 

time. The simplified substrate, entry 3, lacking the allylic methyl group gave terminal diol product in a 

diminished ratio of 15: 1.13 The larger t-butyldiphenylsilyl (TBDPS) protecting group, entry 4, restored the high 

selectivity consistant with the proposed hinderence model. 

High selectivity was also found in the case of mono- versus disubstituted oletin as shown in entry 5. 

With simple diene substrates, lacking the silylether, Sharpless has shown that internal dihydroxylation 

predominates (13: 1,56% yield).” Now with entry 5, the terminal oletin was dihydroxylated with no observable 

internal dihydroxylation product after 24 h at rt. Initially the reaction was run at 0 “C for 3 d giving 20% yield of 

the terminal diol with 54% recovered starting material. The yield was significantly improved by reaction at rt for 

12 h giving a 63% yield based on recovered starting material. In the case of terminal di- versus internal 

trisubstituted olefin, entry 6, exclusive preference for terminal olefin oxidation was found giving diol in 70% 

yield with no other oxidation products observable. Acetate, entry 7, in addition to being sterically smaller, is 

more electron withdrawing relative to a silylether.’ These two factors combined to erode the regioselectivity 

giving a 3: 1: 1 mixture of terminal diol, internal diol, and tetraol products. 

In conclusion, “reverse” Sharpless selectivity for terminal dihydroxylation of non-conjugated dienes 

can be performed with high selectivity using the AD-mix reagent provided the internal olefin is hindered by an 

adjacent group of sufficient size. These findings significantly extend the scope and utility of asymmetric 

allylmetal reagents. 
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